Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost.

نویسندگان

  • Chris M Wood
  • Carol Bucking
  • Martin Grosell
چکیده

Marine teleosts generally secrete basic equivalents (HCO(3)(-)) and take up Na(+) and Cl(-) in the intestine so as to promote absorption of H(2)O. However, neither the integration of these functions with feeding nor the potential role of the gut in ionoregulation and acid-base balance in freshwater have been well studied. The euryhaline killifish (Fundulus heteroclitus) is unusual in lacking both an acid-secreting stomach and a mechanism for Cl(-) uptake at the gills in freshwater. Responses to a satiation meal were evaluated in both freshwater- and seawater-acclimated killifish. In intact animals, there was no change in acid or base flux to the external water after the meal, in accord with the absence of any post-prandial alkaline tide in the blood. Indeed, freshwater animals exhibited a post-prandial metabolic acidosis ('acidic tide'), whereas seawater animals showed no change in blood acid-base status. In vitro gut sac experiments revealed a substantially higher rate of Cl(-) absorption by the intestine in freshwater killifish, which was greatest at 1-3 h after feeding. The Cl(-) concentration of the absorbate was higher in preparations from freshwater animals than from seawater killifish and increased with fasting. Surprisingly, net basic equivalent secretion rates were also much higher in preparations from freshwater animals, in accord with the 'acidic tide'; in seawater preparations, they were lowest after feeding and increased with fasting. Bafilomycin (1 micromol l(-1)) promoted an 80% increase in net base secretion rates, as well as in Cl(-) and fluid absorption, at 1-3 h post-feeding in seawater preparations only, explaining the difference between freshwater and seawater fish. Preparations from seawater animals at 1-3 h post-feeding also acidified the mucosal saline, and this effect was associated with a marked rise in P(CO(2)), which was attenuated by bafilomycin. Measurements of chyme pH from intact animals confirmed that intestinal fluid (chyme) pH and basic equivalent concentration were lowest after feeding in seawater killifish, whereas P(CO(2)) was greatly elevated (80-95 Torr) in chyme from both seawater and freshwater animals but declined to lower levels (13 Torr) after 1-2 weeks fasting. There were no differences in pH, P(CO(2)) or the concentrations of basic equivalents in intestinal fluid from seawater versus freshwater animals at 12-24 h or 1-2 weeks post-feeding. The results are interpreted in terms of the absence of gastric HCl secretion, the limitations of the gills for acid-base balance and Cl(-) transport, and therefore the need for intestinal Cl(-) uptake in freshwater killifish, and the potential for O(2) release from the mucosal blood flow by the high P(CO(2)) in the intestinal fluids. At least in seawater killifish, H(+)-ATPase running in parallel to HCO(3)(-):Cl(-) exchange in the apical membranes of teleost enterocytes might reduce net base secretion and explain the high P(CO(2)) in the chyme after feeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake, handling and excretion of Na+ and Cl- from the diet in vivo in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric teleost.

A radiotracer approach using diets labelled with (22)Na(+), (36)Cl(-) and [(14)C]polyethylene-4000 (PEG-4000) was employed to investigate the role of intestinal uptake from the food in ion homeostasis in the killifish Fundulus heteroclitus. This euryhaline teleost lacks both a stomach and the capacity for Cl(-) uptake at the gills in freshwater. PEG-4000 appearance in the water was minimal up t...

متن کامل

Fundulus heteroclitus acutely transferred from seawater to high salinity require few adjustments to intestinal transport associated with osmoregulation.

The common killifish, Fundulus heteroclitus, has historically been a favorite organism for the study of euryhalinity in teleost fish. Despite the species' large range of salinity tolerance, studies of osmoregulation in high salinity are rare, with most previous studies focused on fish transferred between freshwater and seawater. Similarly, while branchial transport properties have been studied ...

متن کامل

Independence of net water flux from paracellular permeability in the intestine of Fundulus heteroclitus, a euryhaline teleost.

Paracellular permeability and absorptive water flux across the intestine of the euryhaline killifish were investigated using in vitro gut sac preparations from seawater- and freshwater-acclimated animals. The permeability of polyethylene glycol (PEG), a well-established paracellular probe, was measured using trace amounts of radiolabelled oligomers of three different molecular sizes (PEG-400, P...

متن کامل

SHORT COMMUNICATION Electrical aspects of the osmorespiratory compromise: TEP responses to hypoxia in the euryhaline killifish (Fundulus heteroclitus) in freshwater and seawater

The osmorespiratory compromise, the trade-off between the requirements for respiratory and ionoregulatory homeostasis at the gills, becomes more intense during environmental hypoxia. One aspect that has been previously overlooked is possible change in transepithelial potential (TEP) caused by hypoxia, whichwill influence branchial ionic fluxes. Using the euryhaline killifish, we show that acute...

متن کامل

Electrical aspects of the osmorespiratory compromise: TEP responses to hypoxia in the euryhaline killifish (Fundulus heteroclitus) in freshwater and seawater.

The osmorespiratory compromise, the trade-off between the requirements for respiratory and ionoregulatory homeostasis at the gills, becomes more intense during environmental hypoxia. One aspect that has been previously overlooked is possible change in transepithelial potential (TEP) caused by hypoxia, which will influence branchial ionic fluxes. Using the euryhaline killifish, we show that acut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2010